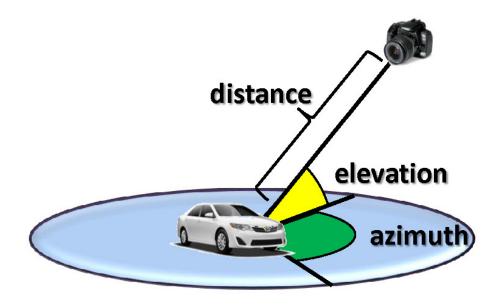
KU LEUVEN

Is 2D Information Enough For Viewpoint Estimation?

Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars

BMVC 2014

• Viewpoint estimation: Given an image, predicting viewpoint for object of interest

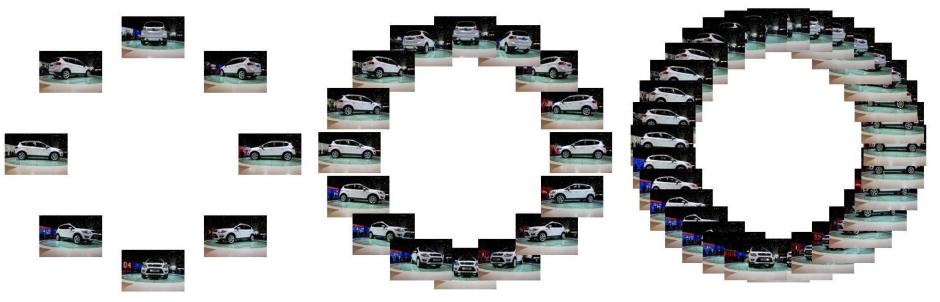


[1] <u>http://cvgl.stanford.edu/projects/pascal3d.html</u>

• Viewpoint estimation: Given an image, predicting viewpoint for object of interest

• Viewpoint estimation: Given an image, predicting viewpoint for object of interest

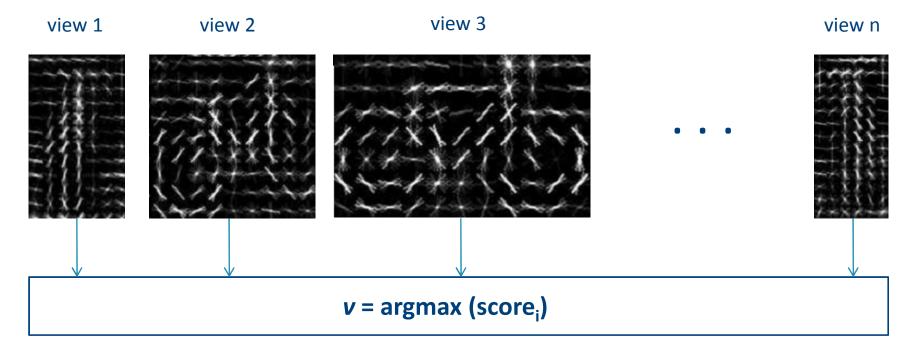
• Viewpoint estimation: Given an image, predicting viewpoint for object of interest



• Fine-grained task of viewpoint estimation

Related works : Detector-based 2D models

 Inspired by detectors that have proven to perform well for the single view case



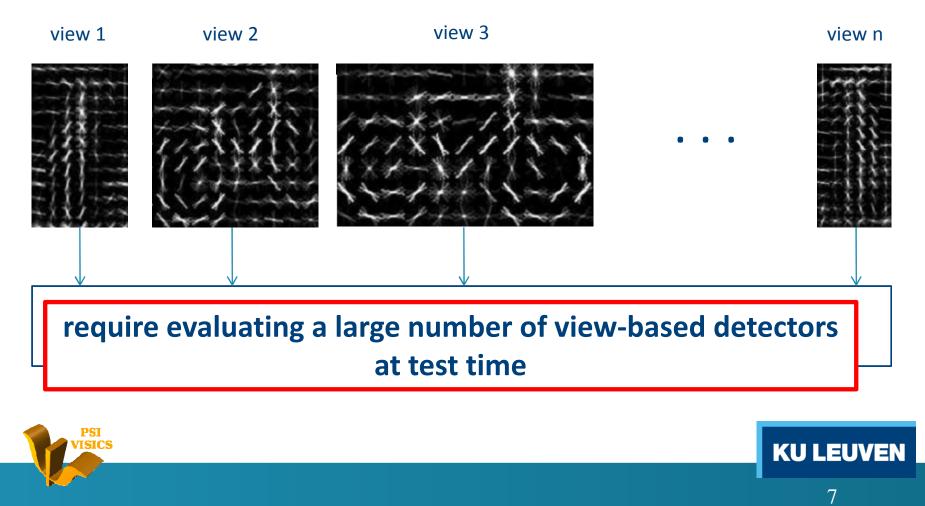
Ch. Gu and X. Ren. Discriminative mixture-of-templates for viewpoint classification. In ECCV, 2010.

ASICS

R.J. Lopez-Sastre, T. Tuytelaars, S. Savarese,: Dpm revisited: A performance evaluation for object category pose estimation. In: ICCV-WS CORP. (2011)

Related works: Detector-based 2D models

Inspired by existing detectors that have proven to perform well

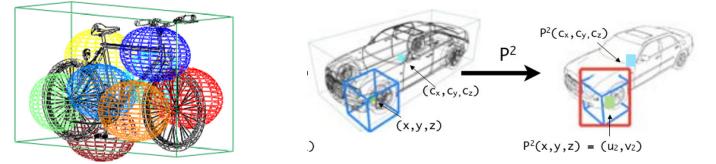


Related works: Embrace 3D

- Establish connections between views of an object by mapping them to 3D model.
- 3D geometry is provided in the form of

SICS

- 3D CAD models / Point clouds / Depth sensor
- Performs fine-grained viewpoint estimation



Left: B. Pepik, P. Gehler, M. Stark, B. Schiele. 3d2pm–3d deformable part models. In ECCV, 2012.

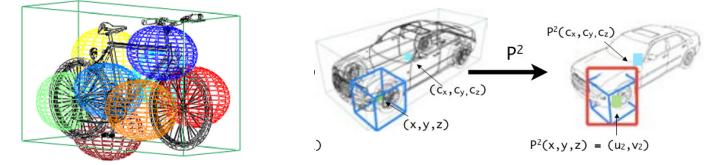
Right: B. Pepik, M. Stark, P. Gehler, and B. Schiele. Teaching 3d geometry to deformable part models. In CVPR, 2012

Related works: Embrace 3D

- Establish connections between views of an object by mapping them to 3D model.
- 3D geometry is provided in the form of

VISICS

- 3D CAD models / Point clouds / Depth sensor
- Performs fine-grained viewpoint estimation



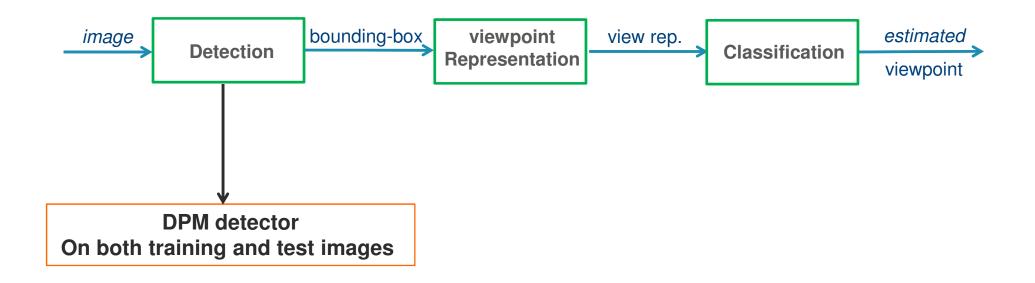
3D information are not always available, for all classes. sometimes are expensive to collect

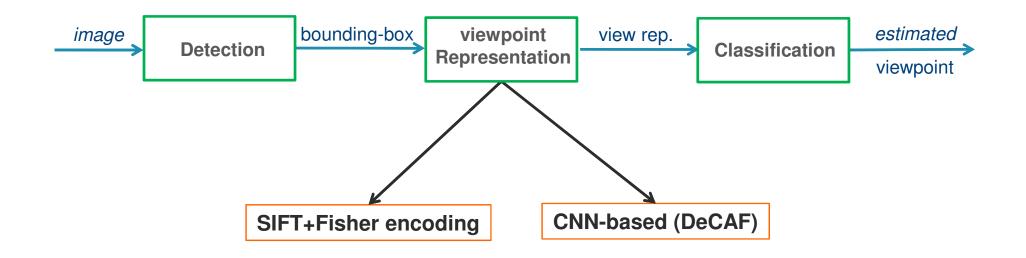
Related works: Chronological Orders

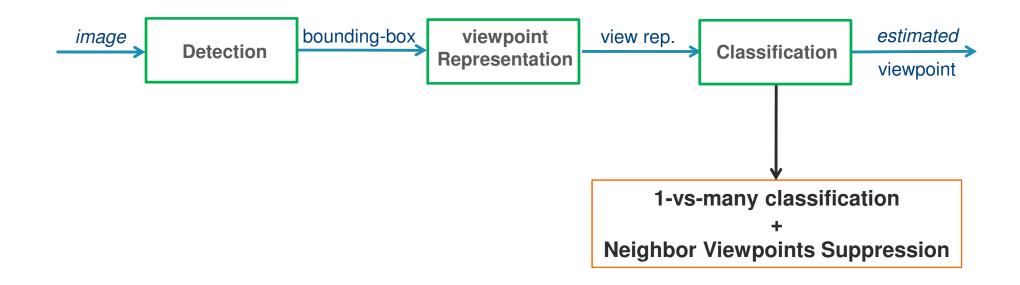
Detector-based 2D models Detector-based 3D models Classificationbased 2D models (current work)

Common Pipeline



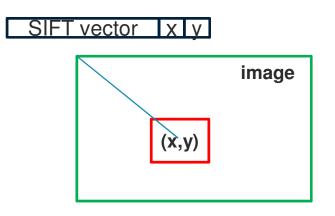






Enriching Fisher by Spatial Information

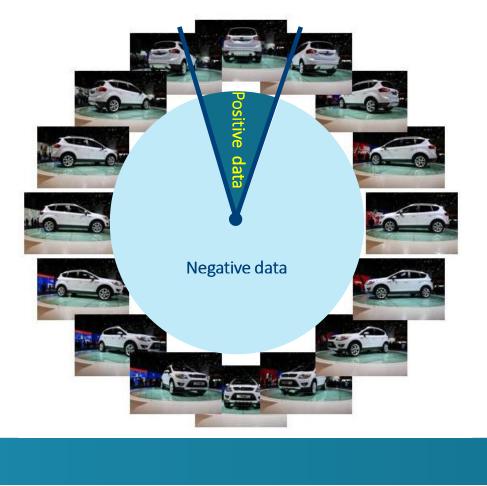
- Low-Level strategy
 - Augmenting dense SIFT with location of the patch.



- High-Level strategy
 - Building Spatial Pyramid of size 4×4, 2×2 and 1×1.

Learning

- Linear support vector machine classifier.
- Each viewpoint as a different class (1-vs-rest strategy).



Datasets - Cars

- Evaluated on EPFL multi-view car dataset
- 2299 images on 8/16/36 discretized viewpoints spanning over 360 degrees.

Characteristics: Fine binning of viewpoints, cars are in the center of images, no occlusion.

Datasets - Faces

- Evaluated on Annotated Faces-in-the-Wild (AFW) dataset.
- 468 faces, **13** discretized viewpoints spanning over **180** degrees.

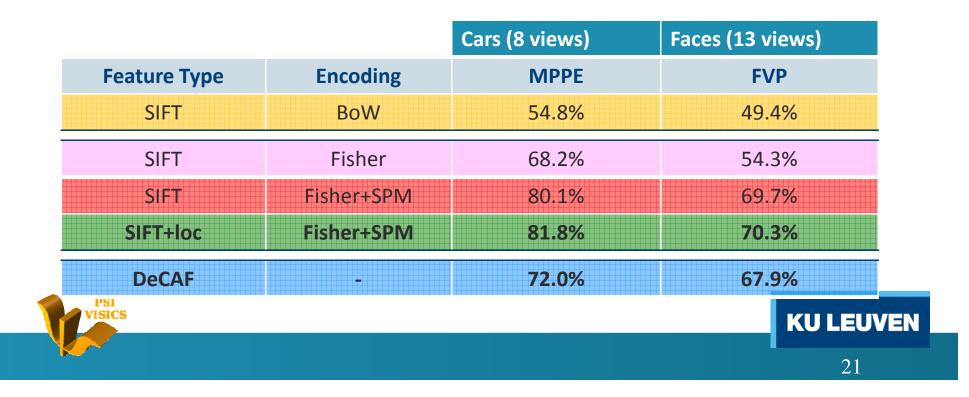
Characteristics: Images contain cluttered backgrounds with large variations in face appearance

Datasets - General Objects

- Evaluated on PASCAL3D+ dataset.
- **11** rigid categories of PASCAL VOC 2012, **4/8/16/24** discretized viewpoints.

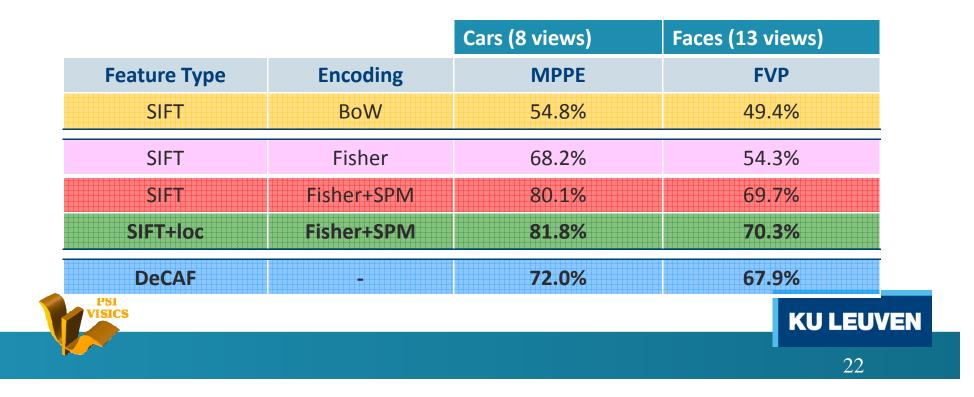
Characteristics: images exhibit much more variability.

Bag-of-Words (BoW) representation is the poorest method.



Bag-of-Words (BoW) representation is the poorest method.

Best representation on both datasets is fisher with spatial pyramid (Fisher+SPM).



Bag-of-Words (BoW) representation is the poorest method.

Best representation on both datasets is fisher with spatial pyramid (Fisher+SPM).

Embedding spatial information in the low-level (SIFT+loc) is still advantageous.

		Cars (8 views)	Faces (13 views)
Feature Type	Encoding	МРРЕ	FVP
SIFT	BoW	54.8%	49.4%
SIFT	Fisher	68.2%	54.3%
SIFT	Fisher+SPM	80.1%	69.7%
SIFT+loc	Fisher+SPM	81.8%	70.3%
DeCAF	-	72.0%	67.9%
VISICS			KU LEUV
			23

Bag-of-Words (BoW) representation is the poorest method.

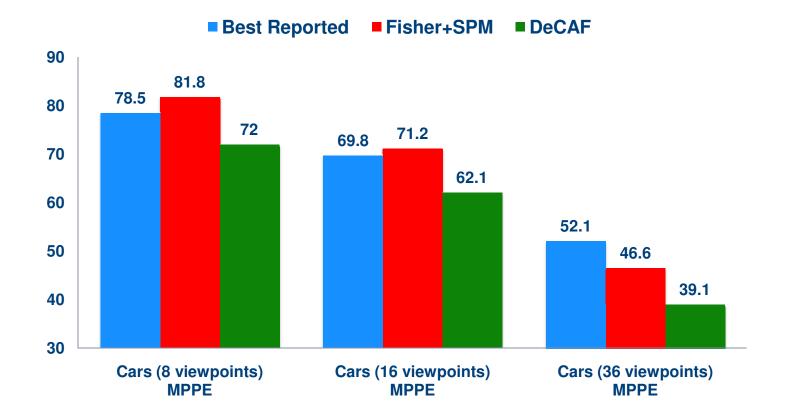
Best representation on both datasets is fisher with spatial pyramid (Fisher+SPM).

Embedding spatial information in the low-level (SIFT+loc) is still advantageous.

CNN-based features (DeCAF) performs quite good, especially considering their much lower dimensionality.

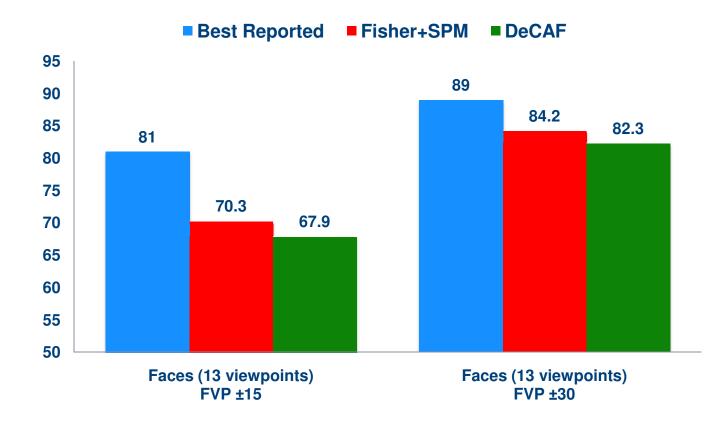
		Cars (8 views)	Faces (13 views)
Feature Type	Encoding	MPPE	FVP
SIFT	BoW	54.8%	49.4%
SIFT	Fisher	68.2%	54.3%
SIFT	Fisher+SPM	80.1%	69.7%
SIFT+loc	Fisher+SPM	81.8%	70.3%
DeCAF	-	72.0%	67.9%
PSI VISICS			KU LEUV
			24

Cars - Comparison with state-of-the-art



Left) B. Pepik, P. Gehler, M. Stark, and B. Schiele. 3d2pm–3d deformable part models. In ECCV, 2012

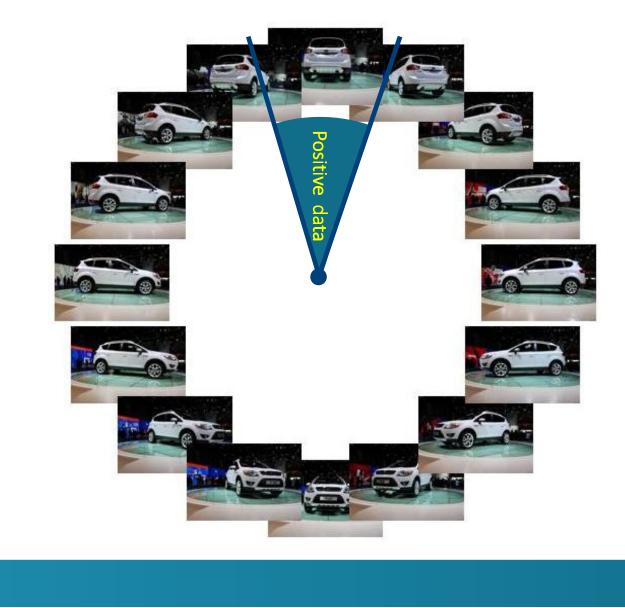
Faces - Comparison with state-of-the-art



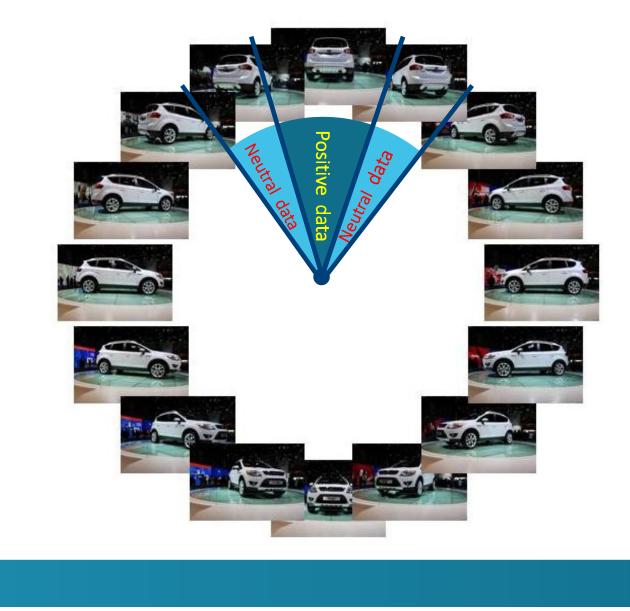
X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization in the wild. In CVPR, 2012

Learning - Challenges

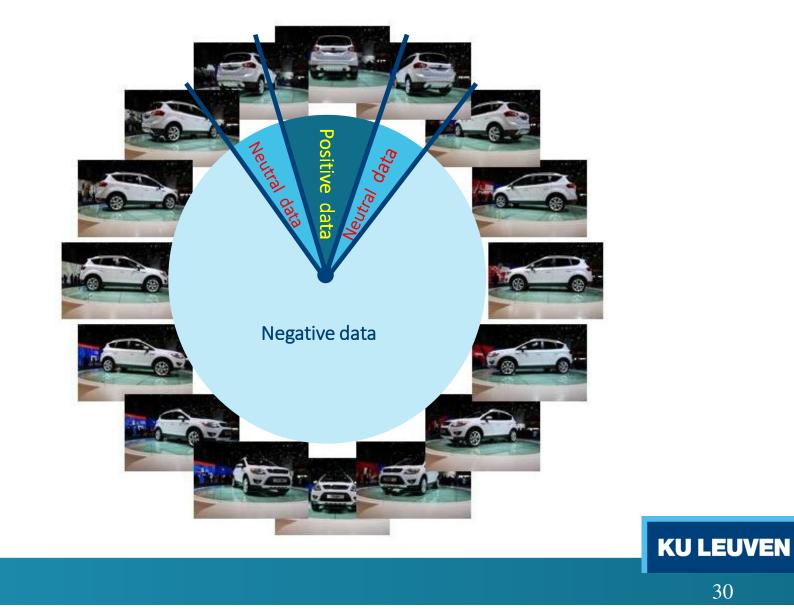
- Nearby viewpoints are visually very correlated.
- Classifier mainly focuses on distinguishing positive viewpoint from similar nearby viewpoints.

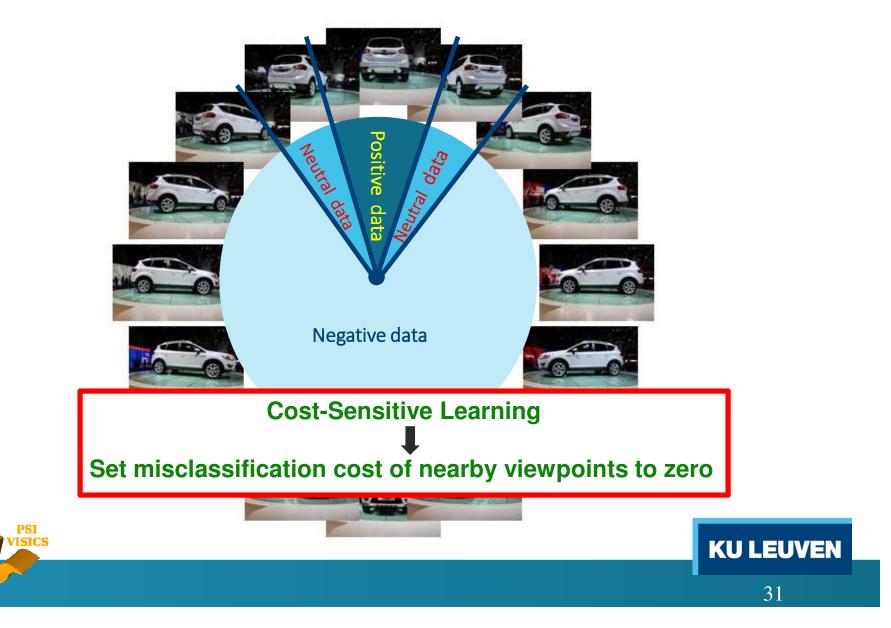


PSI VISICS



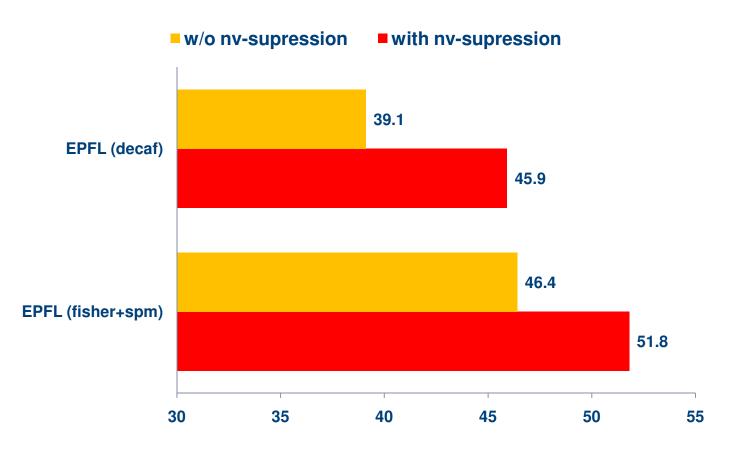
PSI VISICS





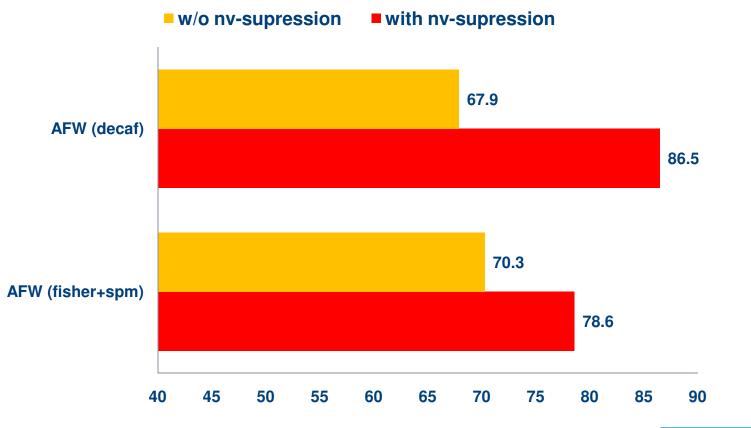
Results – Neighbor Viewpoints Suppression

EPFL cars dataset – 36 bins

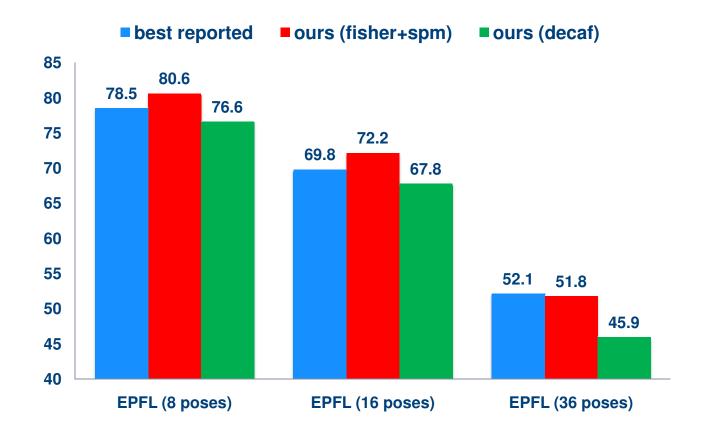


Results – Neighbor Viewpoints Suppression

AFW faces dataset - 13 bins

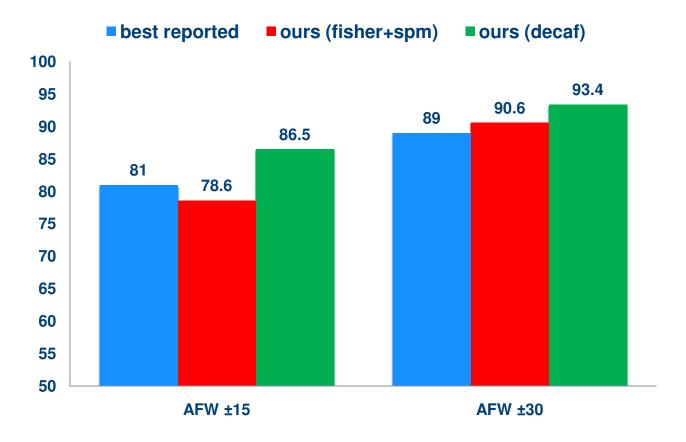


Cars - comparison with state-of-the-art



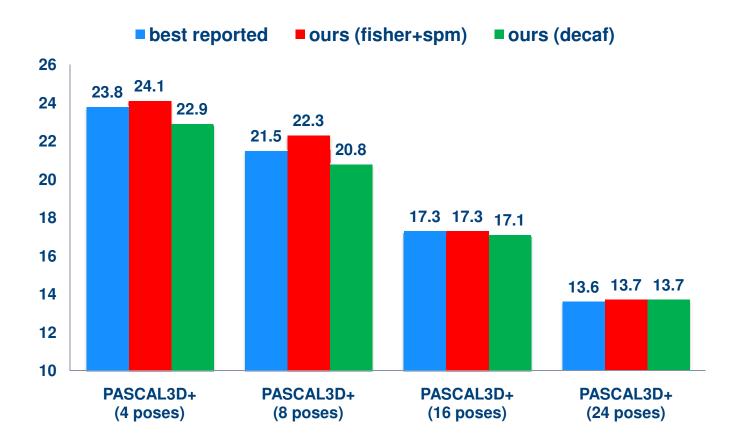
B. Pepik, P. Gehler, M. Stark, and B. Schiele. 3d2pm–3d deformable part models. In ECCV, 2012

Faces - comparison with state-of-the-art



 X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization in the wild. In CVPR, 2012

Objects - comparison with state-of-the-art

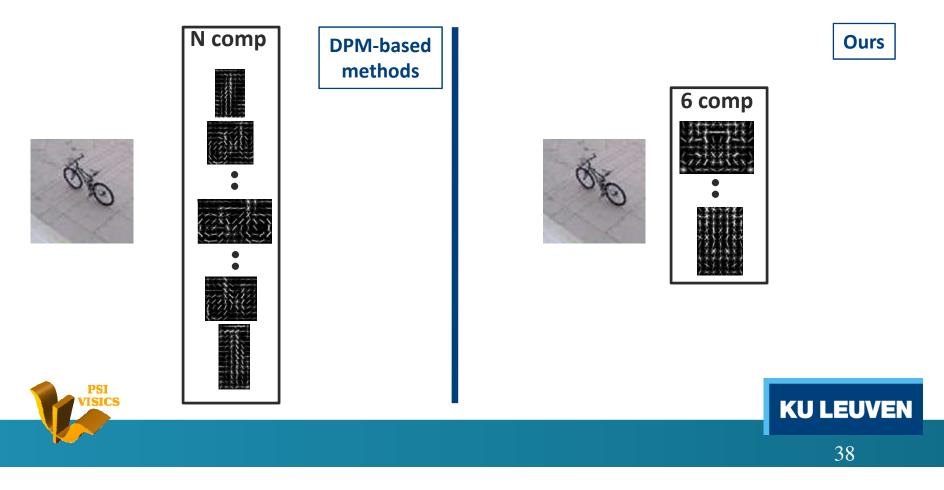


B. Pepik, M. Stark, P. Gehler, and B. Schiele. Teaching 3d geometry to deformable part models. In CVPR, 2012.

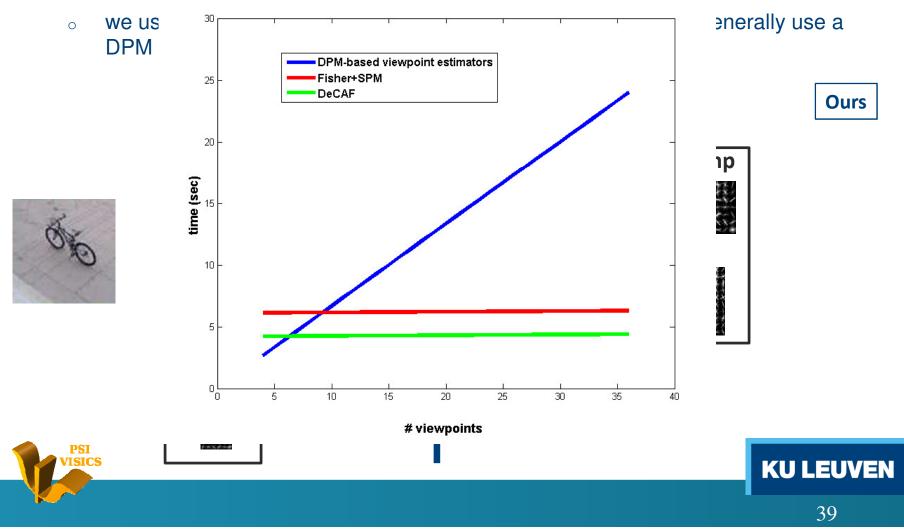
• Time complexity of our pipeline

EPFL dataset				
Task (per image)	Average time (sec)			
Detection	4			
Extracting SIFT + Fisher vector pyramid	2			
DeCAF feature extraction	0.2			
36-bins view classification	0.19			

- We can safely claim that all the methods based on DPM are computationally more demanding.
 - we use standard DPM models with 6 components while others generally use a DPM component for each view.



• We can safely claim that all the methods based on DPM are computationally more demanding.



Conclusion

- We have presented a study of different methods for view estimation.
- In contrast to common believe, the very simple 2D framework, if properly tuned, can in most of the cases outperform the state-ofthe-art including methods based on 3D or more complex and computationally expensive models.
- It suggests the next generation of view estimation methods should probably combine these powerful 2D representations with 3D reasoning.

Thanks For Your Attention! Questions?

Outline

- Problem Definition
- Related works
- Pipeline
- Datasets and Evaluations
- Conclusion

Discussion

- Considering that DeCAF and Fisher are general representations and are not designed specifically for the viewpoint estimation problem, they surprisingly performs well.
- On EPFL cars and PASCAL3D+ dataset, Fisher performs better than DeCAF, while in AFW faces, DeCAF surprisingly performs better after applying neighbor viewpoint suppression procedure.
- The advantage of DeCAF is its lower dimensionality compared to Fisher+SPM.

• Time complexity of our pipeline

	EPFL dataset			
	Task (per image)	Average time (sec)		
	Detection	4		
	Extracting SIFT + Fisher vector pyramid	2		
	DeCAF feature extraction	0.2		
	36-bins view classification	0.19		
	Training 36 one-vs-rest linear SVM	290		

Standard 1-vs-rest Classifier

