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Problem Definition

• Viewpoint estimation: Given an image, predicting viewpoint for 

object of interest
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[1] http://cvgl.stanford.edu/projects/pascal3d.html
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• Fine-grained task of viewpoint estimation



Related works : Detector-based 2D models 

• Inspired by detectors that have proven to perform well for 

the single view case

. . .

view 1 view 2 view 3 view n
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. . .

v = argmax (scorei)

Ch. Gu and X. Ren. Discriminative mixture-of-templates for viewpoint classification. In ECCV, 2010.

R.J. Lopez-Sastre, T. Tuytelaars, S. Savarese,: Dpm revisited: A performance evaluation for object category pose 

estimation. In: ICCV-WS CORP. (2011)



Related works: Detector-based 2D models 

• Inspired by existing detectors that have proven to perform 

well

. . .

view 1 view 2 view 3 view n
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. . .

v = argmax (scorei)require evaluating a large number of view-based detectors 

at test time



Related works: Embrace 3D

• Establish connections between views of an object by 

mapping them to 3D model.

• 3D geometry is provided in the form of

• 3D CAD models / Point clouds / Depth sensor

• Performs fine-grained viewpoint estimation
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Left: B. Pepik, P. Gehler, M. Stark, B. Schiele. 3d2pm–3d deformable part models. In ECCV, 2012.

Right: B. Pepik, M. Stark, P. Gehler, and B. Schiele. Teaching 3d geometry to deformable part 

models. In CVPR, 2012



Related works: Embrace 3D

• Establish connections between views of an object by 

mapping them to 3D model.

• 3D geometry is provided in the form of

• 3D CAD models / Point clouds / Depth sensor

• Performs fine-grained viewpoint estimation
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3D information are not always available, for all classes.

sometimes are expensive to collect



Related works: Chronological Orders

Detector-based Detector-based 

Classification-
based 2D 
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Detector-based 
2D models

Detector-based 
3D models

based 2D 
models

(current work)



Common Pipeline

Detection and viewpoint estimation
image

bounding-box

estimated

viewpoint
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viewpoint

This pipeline is decomposed to



Our Pipeline

Detection
bounding-box view rep. image viewpoint 

Representation

estimated

viewpoint
Classification
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DPM detector
On both training and test images 



Our Pipeline
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SIFT+Fisher encoding CNN-based (DeCAF)



Our Pipeline

1-vs-many classification

Detection
bounding-box view rep. image viewpoint 

Representation

estimated

viewpoint
Classification
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1-vs-many classification
+

Neighbor Viewpoints Suppression



Enriching Fisher by Spatial Information

• Low-Level strategy

o Augmenting dense SIFT with location of the patch.

SIFT vector x y

image
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• High-Level strategy

o Building Spatial Pyramid of size 4×4, 2×2 and 1×1.

(x,y)



Learning

• Linear support vector machine classifier. 

• Each viewpoint as a different class (1-vs-rest strategy).
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Datasets - Cars

• Evaluated on EPFL multi-view car dataset

• 2299 images on 8/16/36 discretized viewpoints spanning over 360 degrees.
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Characteristics: Fine binning of viewpoints, cars are in the center of 

images, no occlusion.  



Datasets - Faces

• Evaluated on Annotated Faces-in-the-Wild (AFW) dataset.

• 468 faces, 13 discretized viewpoints spanning over 180 degrees.
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Characteristics: Images contain cluttered backgrounds with large 

variations in face appearance



Datasets - General Objects

• Evaluated on PASCAL3D+ dataset.

• 11 rigid categories of PASCAL VOC 2012, 4/8/16/24 discretized viewpoints.
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Characteristics: images exhibit much more variability.



Results - Baseline

Bag-of-Words (BoW) representation is the poorest method.
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Cars (8 views) Faces (13 views)

Feature Type Encoding MPPE FVP

SIFT BoW 54.8% 49.4%

SIFT Fisher 68.2% 54.3%

SIFT Fisher+SPM 80.1% 69.7%

SIFT+loc Fisher+SPM 81.8% 70.3%

DeCAF - 72.0% 67.9%
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Results - Baseline

Bag-of-Words (BoW) representation is the poorest method.

Best representation on both datasets is fisher with spatial pyramid (Fisher+SPM).

Embedding spatial information in the low-level (SIFT+loc) is still advantageous.

CNN-based features (DeCAF) performs quite good, especially considering their 

much lower dimensionality.
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Cars (8 views) Faces (13 views)

Feature Type Encoding MPPE FVP

SIFT BoW 54.8% 49.4%

SIFT Fisher 68.2% 54.3%

SIFT Fisher+SPM 80.1% 69.7%

SIFT+loc Fisher+SPM 81.8% 70.3%

DeCAF - 72.0% 67.9%



Cars - Comparison with state-of-the-art
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(Left) B. Pepik, P. Gehler, M. Stark, and B. Schiele. 3d2pm–3d deformable part models. In ECCV, 2012
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Faces - Comparison with state-of-the-art

81

89

70.3

84.2

67.9

82.3

75

80

85

90

95

Best Reported Fisher+SPM DeCAF

26

X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization in the wild. In CVPR, 2012
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Learning - Challenges

• Nearby viewpoints are visually very correlated.

• Classifier mainly focuses on distinguishing positive viewpoint 

from similar nearby viewpoints.
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Neighbor Viewpoints Suppression
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Cost-Sensitive Learning

Set misclassification cost of nearby viewpoints to zero



Results – Neighbor Viewpoints Suppression
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Results – Neighbor Viewpoints Suppression
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Cars - comparison with state-of-the-art
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B. Pepik, P. Gehler, M. Stark, and B. Schiele. 3d2pm–3d deformable part models. In ECCV, 2012



Faces - comparison with state-of-the-art
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Objects - comparison with state-of-the-art
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Computational Costs

• Time complexity of our pipeline

EPFL dataset

Task (per image) Average time (sec)

Detection 4

37

Extracting SIFT + Fisher vector 

pyramid 

2

DeCAF feature extraction 0.2

36-bins view classification 0.19



Computational Costs

• We can safely claim that all the methods based on DPM are computationally more 

demanding.

o we use standard DPM models with 6 components while others generally use a 

DPM component for each view.

N comp

6 comp

DPM-based

methods

Ours

38

6 comp
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Conclusion

• We have presented a study of different methods for view

estimation.

• In contrast to common believe, the very simple 2D framework, if

properly tuned, can in most of the cases outperform the state-of-

the-art including methods based on 3D or more complex andthe-art including methods based on 3D or more complex and

computationally expensive models.

• It suggests the next generation of view estimation methods should

probably combine these powerful 2D representations with 3D

reasoning.
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Thanks For Your Attention!

Questions?



Outline

• Problem Definition

• Related works

• Pipeline

• Datasets and Evaluations

• Conclusion
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Discussion

• Considering that DeCAF and Fisher are general representations 

and are not designed specifically for the viewpoint estimation 

problem, they surprisingly performs well.

• On EPFL cars and PASCAL3D+ dataset, Fisher performs better 

than DeCAF, while in AFW faces, DeCAF surprisingly performs 

43

than DeCAF, while in AFW faces, DeCAF surprisingly performs 

better after  applying neighbor viewpoint suppression 

procedure.

• The advantage of DeCAF is its lower dimensionality compared to 

Fisher+SPM. 



Computational Costs

• Time complexity of our pipeline

EPFL dataset

Task (per image) Average time (sec)

Detection 4
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Training 36 one-vs-rest linear SVM 290

Extracting SIFT + Fisher vector 

pyramid 

2

DeCAF feature extraction 0.2

36-bins view classification 0.19



Standard 1-vs-rest Classifier
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