Is 2D Information Enough For Viewpoint Estimation?
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Context. Estimating the pose of objects is a classical problem in vision.
It aims at predicting a discrete or continuous viewpoint. Recent top per-
forming methods for viewpoint estimation use 3D information. These 3D
annotations are expensive and not really available for many classes.

What does this paper demonstrate. We show that a very simple 2D
architecture (in the sense that it does not make any assumption or rea-
soning about the 3D information of the object) generally used for object
classification, if properly adapted to the specific task, can provide top per-
formance also for pose estimation. More specifically, we demonstrate
how a 1-vs-all classification framework based on a Fisher Vector (FV) [1]
pyramid or convolutional neural network (CNN) based features [2] can
be used for pose estimation. In addition, suppressing neighboring view-
points during training seems key to get good results.

The pipeline. Our method takes as input a detection bounding box, ex-
tracts features and assigns to the bounding box a pose. The estimation of
the pose is done with a one-vs-all classifier of a discrete set of viewpoints.

— Detection: we use the deformable part models (DPM). We train
our viewpoint estimation on the detected objects.

— Feature Extraction: we extract dense SIFT descriptors from the
output of the detector. They are enriched by augmenting the loca-
tion of the patch centre with respect to the upper-left corner of the
bounding box, normalized by its size.

— Pose representation: We compare two representations commonly
used in visual classification: Fisher Vector [1] + spatial pyramid
matching and convolutional neural network based features [2].

— Learning: we consider each viewpoint as a different class. In this
scenario an important difference with a standard 1-vs-all multi-
class problem is that nearby viewpoints are generally visually very
correlated. In the experimental results we show that eliminating
nearby poses from negative samples always improves the view-
point estimation. We call this procedure neighboring viewpoint
suppression or briefly nv-suppression.

Experimental Evaluation. We evaluated our method on four datasets:
Annotated faces-in-the-wild (AFW), EPFL multi-view car dataset, PAS-
CAL3D+ and 3DObject dataset.

In table 1, we evaluate the performance of different features and en-
codings. we clearly notice that Bag-of-Words (BoW) representation is
the poorest method for pose representation. The best representation on
both datasets is fisher with spatial pyramid spm. Also embedding
spatial information in the low-level (sift+1loc) is still advantageous.
Finally, CNN-based features, decaf, performs quite good as well, espe-
cially considering their much lower dimensionality.

EPFL (8 poses) | AFW (13 poses)
Feature Type Encoding MPPE FVP+£15
sift BoW 54.8% 49.4%
sift fisher 68.2% 54.3%
sift fisher+spm 80.1% 69.7%
sift+loc | fisher+spm 81.8% 70.3%
decaf - 72.0% 67.9%

Table 1: An evaluation with training and testing data from output of detec-
tor on the EPFL car dataset and AFW faces dataset. MPPE is computed as
the average of the diagonal of the confusion matrix. FVP=£15 is the frac-
tion of faces that are within £15 degrees error interval, counting missed
detections as infinite error.
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Figure 1: The effect of nv—-supression using 36 poses for EPFL and
13 poses for AFW dataset.
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Figure 2: Viewpoint estimation in terms of MPPE, FVP(£15), mean AVP
(Average Viewpoint Precision) and MPPE for EPFL, AFW, PASCAL3D+

and 3DObjects datasets respectively.

Figure 1 shows the effect of the neighboring viewpoints supression
(nv-suppression). Its advantage is quite evident for the finer bin-
ning pose estimation for both types of features.

Comparison with state-of-the-art. Figure 2 shows the results of our
methods and the current state-of-the-art on four datasets.

Conclusion. Through an extensive evaluation we can clearly see that for
the fine-grained task of pose estimation, in contrast to common believe,
the very simple framework based on the extraction of modern features
(decaf) or in combination with modern encodings (fisher+spm) can
in most of the cases get similar results as the 3D methods previously pro-
posed and designed specifically for the problem of pose estimation.
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