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Historical view

* Energy functions like what we have in CRFs go
back at least as far as Horn & Schunk (1981)

 The Bayesian view was popularized by Geman
and Geman (TPAMI 1984)

e Starting in the late 90’s researchers re-
discovered discrete optimization methods!

— Graph cuts, belief prop, semi-definite
programming, etc.



What we will explain
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Figure 1.2 Diagram of the relationship between naive Bayes, logistic regression,
HMMs, linear-chain CRFs, generative models, and general CRFs.



Introduction — toy example

assume we have a sequence of snapshots from activities
we are doing during one day. We want to label each image,
x;, with the activity it represents, y..

simple approach: per-image classifier

— Employ logistic regression as a discriminative log-linear model
for classification

— we lose a lot of information

so what we can do? incorporate the labels of nearby
images (we want sequential graphical model)

— Employ CRF as a log-linear discriminative model for sequential
labeling



A note on graphical models

* A graph which nodes are random variables

* We always have (chain rule)

P(xpseesx, 1 Y)=p(x I x s, V) P(X, 1 X, 50y X, ¥)eep(x L y)

p(x,x, 1 y)=plx, [ x,y)p(x |y)

Conditional independency:

plx,x, ly)=plx, [ y)p(x 1y)



A note on graphical models

* independency as an important concept as it can
be used to decompose complex probability
distributions => makes complex computations
more efficient

e GMs model independency between random
variables (i.e. absence of edges is informative)

* =>decompose complex probability distributions



A note on graphical models

Belief networks -> directed graphs
Markov networks -> undirected graphs

Factor graphs connects factors and random variables. Each
factor is a function(not necessarily a probability distribution)
defined over the random variables it is connected to.

Both directed/undirected graphs can be transformed to factor
graphs
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A note on graphical models

* Factor graph decompose the distributions into its factors.

po) =— .0

W are so-called potentials. Should be positive

S is a subset of random variables. Usually
maximal cliques (a set of nodes that make
complete graph)



Naive Bayes

* A generative approach model joint distribution

p(y,x)=p(y)p(xly)
* Too complex to compute directly
x=[x,..,x |

e Are all random variables x really dependent to each
other?



Naive Bayes

* Naive Bayes assumption: all input variables x; are
conditionally independent of each other

p(y,x) = p(y)H p(x;1y)

* (in)dependencies are not modeled.
» performs surprisingly well in many real world applications!



Naive Bayes
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(a) Independency graph (b) Factor graph

p(x;,%,,%5,y) = p(x, 1 y) p(x, | y) p(x; 1 y) p(y)

p(x, x5, x5, y) =¥, (x, W, (x,, y)F; (x5, Y)W, (y)



Logistic regression

 Sometimes known as maximum entropy
classifier in NLP community)

e Adiscriminative approach => model
conditional probability p(y|x)



Logistic regression
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p(y1x)=—] |exp(4f,(x. )



Logistic regression

e |s not similar to factorization of distribution?

* potential functions = exponential function of

weighted teatures linear model ax+b
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 fulfils the requirement of strict positivity of
the potential functions



Hidden Markov Models (HMMs)

* Classifiers like Naive-Bayes predict only a single
class variable

* Suppose we want to do labeling in a sequences of
images. It is reasonable to consider dependencies
between the labels at consecutive sequence
— sleep, sleep, travel, sleep, sleep
— sleep, sleep, check mail, sleep, sleep

* Asequential version of Naive-Bayes. (labels are
not independent)



Hidden Markov Models (HMMs)
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(a) Independency graph (b) Factor graph

P(X, %y, X5, Y15, Y, ¥3) = P(y) p(x, 1 y))
P, Ly p(x, 1 y,)p(y; 1 y,) p(x; 1 y;)



Hidden Markov Models (HMMs)

P(;C,§) — Hp(yi | yi_1)p(xi | yi)

* Again a generative model

 We will back to HMMs to have a comparison
with CRFs
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Conditional Random Fields

* Asequential version of logistic regression so it
is a discriminative model as well.

e HMMs are tied to linear-sequence structure
but CRFs can have arbitrary structures.

* We have a sequence of labels y (e.g. sleeping-
drinking- sleeping again)



Conditional Random Fields

e Starting with

—_ -

p(ylx)=

p(y,x)  p(y,x)

P = T2

p) Y p(y.x)




Conditional Random Fields

y1x)= P (x,,
p(ylx)= Z(X)H (X, 7))

Y is the factor corresponding to maximal clique s

A)



Conditional Random Fields

W Yt Yt+1 Yt+2 Yt+3
a) Independency graph ) Factor graph

p(y | .X) = \Pl(yt’ yt+1’x)\{’2(yt+1’ yt+2’x)\P3(yz+2’ yt+39x)



Conditional Random Fields

To define feature
functions we can use
observations from any
time step, that is
because we have
written the observation
vector X in one node.
For e.g. it is possible to
use the next image xt+1
to define a feature

Yt Yt+1 Yi4+2 Yi+3

T

(b) Factor graph
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Conditional Random Fields

* Now assume each potential function is a
logistic function

Y (x, y,) = eXp(Z Af (x, V,))

* For example for a linear-chain CRFs

W,(x,7,) = exp(X A4S, (6 Y Y0 1)



Conditional Random Fields

e So for a linear-chain CRF, the overall
conditional probability is

~ ~ .
p(ylx)=—=exp(D D AL (x,y,. ¥y, )
Z(x) i

 The outer sum runs over each potential
function j out of n frames of video.

e The inner sum runs over each feature i out of
m features



Conditional Random Fields

* Play with CRF equation result in different graphs

- - 1 n - . - o 1 m N .
py10)=—=] [expQ_Af(x ¥,y | P10 =—=] [expQ Af, 6, 5,0.0)
Z(x) 4 j Z(x) =i j
Yt Yt+1 Yt+2 Yt+3

=l

Notice to its similarity to
logistic regression



CRFs

* |Inference: Given observation x and a CRF A:
find the most probably fitting label sequence

y

* Training: Given label sequences Y and
observation sequences X: find parameters of a
CRF, weights A, to maximize p(y|x; A).



CRFs - Training

MLE of model parameters A

regularization terms are often added to
prevent over-fitting

For linear-chain CRFs, (log-)likelihood function
is concave (=> easy to maximize)

A" =argmin L(A, D)+ C%”)“Hz
A

L(A,D)=- log(];:P(yk |Xk,k)]

m [ 1 n
=-9Y lo ex Af.(yE L vEx"i
S0t sy P S S A 0L )}



CRFs - Inference

* |tis all about optimization.

* Belief propagation, Linear programming
relaxations, Dual decomposition, Psedo-
boolean optimization, . ..

e the well-known method, graph-cut, will be
discussed next session



CRFs for images

* Consider image as a field of random variables
* unary potentials + binary potentials



CRFs for images

* Negative Log-likelihood of p(y|x) gives the so-
called energy function

p(y | X) He D(y,; X)He—‘{'(yp 'Y 3%)

pPeq
peq
= Non-convex - prior term - pair wise term
. - unary term - smoothness term
with thousands - binary term

of dimension



CRFs for images

 Segmentation as an intuitive problem

Input Best thresholded image

* |f we only have unary term, the cheapest solution is the
thresholded output

* The functionality of binary term is to keep the smoothness



connection to HMM

* long story short: CRFs are more powerful —
they can model everything HMMs can and

more:

p(;a;) — Hp(yi | yi_1)p(xi | yi)

log(p(x, y) = 3 log(p(y; 1y, )+ X log(p(x;15,)



connection to HMM

* For every state p(y;, =Aly,_, =B) define
fas i Yy 1, ) =1y, = A,y = Bl
A5 =log(p(y, = Aly,, =B))
* Do the same for p(x; =Cly, =D)

e [.]is indicator function

A
e =>Proportional to the score of CRFs ez s ] ap



Is vision solved?
Can we all go home now?

 For many easy problems the technical
problem of minimizing the energy is now
effectively solved
— Easy = sub-modular/regular, & first-order
— Technical problem # vision problem
— “The energy”? Is the right one obvious??

e Still, this is vast progress in a relatively short
period of time
— These “easy” problems were impossible in ‘97!



Logistic Regression

What we explained
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Figure 1.2 Diagram of the relationship between naive Bayes, logistic regression,
HMMs, linear-chain CRFs, generative models, and general CRFs.
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