CRF - session 2

Formal introduction
Amir Ghodrati
August 2013

Agenda

- Introduction
- Graphical Models
- Naïve-Bayes
- Logistic Regression
- Hidden Markov Models
- Conditional Random Fields

Real Introduction (longest one ever in the world)

Historical view

- Energy functions like what we have in CRFs go back at least as far as Horn & Schunk (1981)
- The Bayesian view was popularized by Geman and Geman (TPAMI 1984)
- Starting in the late 90's researchers rediscovered discrete optimization methods!
 - Graph cuts, belief prop, semi-definite programming, etc.

What we will explain

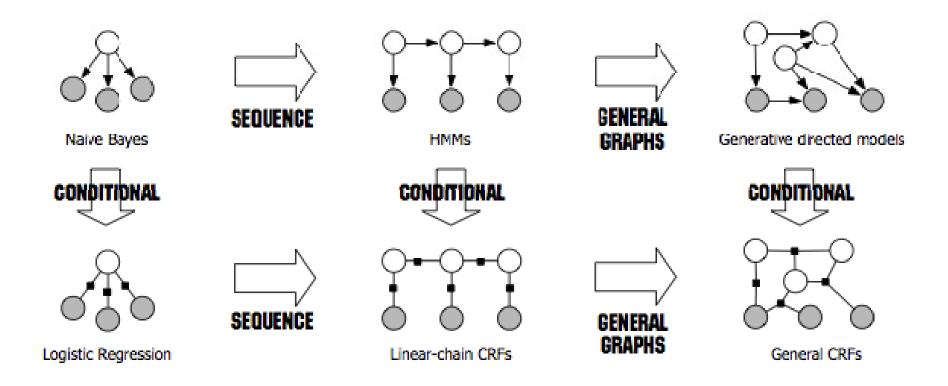


Figure 1.2 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-chain CRFs, generative models, and general CRFs.

Introduction – toy example

- assume we have a sequence of snapshots from activities we are doing during one day. We want to label each image, x_i, with the activity it represents, y_i.
- simple approach: per-image classifier
 - Employ logistic regression as a discriminative log-linear model for classification
 - we lose a lot of information
- so what we can do? incorporate the labels of nearby images (we want sequential graphical model)
 - Employ CRF as a log-linear discriminative model for sequential labeling

- A graph which nodes are random variables
- We always have (chain rule)

$$p(x_1,...,x_n \mid y) = p(x_n \mid x_{n-1},...,x_1,y) p(x_{n-1} \mid x_{n-2},...,x_1,y) ... p(x_1 \mid y)$$

$$p(x_1, x_2 | y) = p(x_2 | x_1, y) p(x_1 | y)$$

Conditional independency:

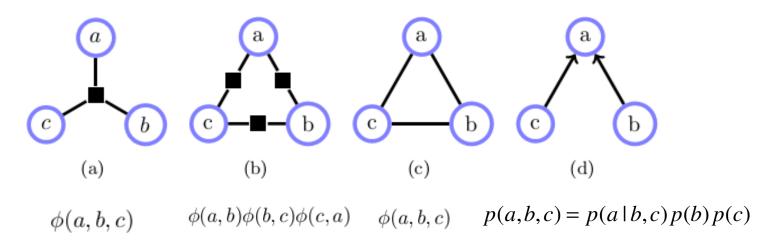
$$p(x_1, x_2 | y) = p(x_2 | y) p(x_1 | y)$$

 independency as an important concept as it can be used to decompose complex probability distributions => makes complex computations more efficient

 GMs model independency between random variables (i.e. absence of edges is informative)

=> decompose complex probability distributions

- Belief networks -> directed graphs
- Markov networks -> undirected graphs
- Factor graphs connects factors and random variables. Each factor is a function(not necessarily a probability distribution) defined over the random variables it is connected to.
- Both directed/undirected graphs can be transformed to factor graphs



Factor graph decompose the distributions into its factors.

$$\overrightarrow{p(v)} = \frac{1}{Z} \prod_{s} \Psi_{s}(v_{s})$$

 Ψ_s are so-called potentials. Should be positive

S is a subset of random variables. Usually maximal cliques (a set of nodes that make complete graph)

Naïve Bayes

A generative approach model joint distribution

$$p(y,x) = p(y)p(x|y)$$

Too complex to compute directly

$$x = [x_1, ..., x_n]$$

 Are all random variables x really dependent to each other?

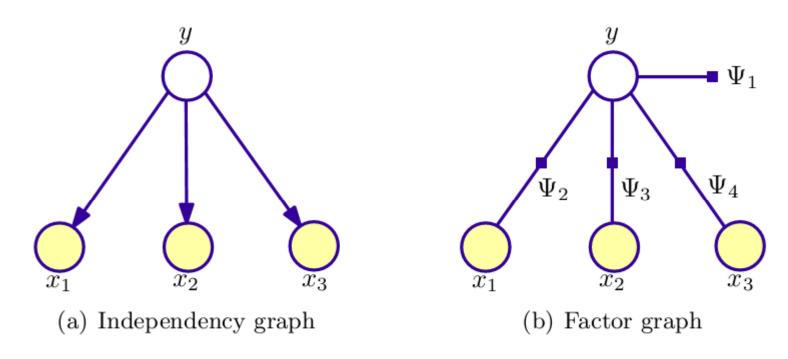
Naïve Bayes

 Naive Bayes assumption: all input variables x_i are conditionally independent of each other

$$p(y,x) = p(y) \prod_{i} p(x_i \mid y)$$

- (in)dependencies are not modeled.
- performs surprisingly well in many real world applications!

Naïve Bayes



$$p(x_1, x_2, x_3, y) = p(x_1 | y) p(x_2 | y) p(x_3 | y) p(y)$$

$$p(x_1, x_2, x_3, y) = \Psi_1(x_1, y)\Psi_2(x_2, y)\Psi_3(x_3, y)\Psi_4(y)$$

Logistic regression

- Sometimes known as maximum entropy classifier in NLP community)
- A discriminative approach => model conditional probability p(y|x)

Logistic regression



$$p(y|x) = \frac{1}{Z} \prod_{i=1}^{m} \exp(\lambda_i f_i(x, y))$$

Logistic regression

- Is not similar to factorization of distribution?
- potential functions = exponential function of weighted features
 linear model ax+b

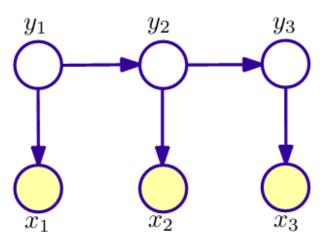
$$\Psi_i = \exp(\lambda_i f_i(x, y))$$

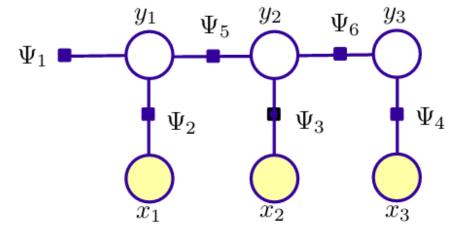
 fulfils the requirement of strict positivity of the potential functions

Hidden Markov Models (HMMs)

- Classifiers like Naïve-Bayes predict only a single class variable
- Suppose we want to do labeling in a sequences of images. It is reasonable to consider dependencies between the labels at consecutive sequence
 - sleep, sleep, travel, sleep, sleep
 - sleep, sleep, check mail, sleep, sleep
- A sequential version of Naïve-Bayes. (labels are not independent)

Hidden Markov Models (HMMs)





(a) Independency graph (b) Factor graph

$$p(x_1, x_2, x_3, y_1, y_2, y_3) = p(y_1)p(x_1 | y_1)$$

$$p(y_2 | y_1)p(x_2 | y_2)p(y_3 | y_2)p(x_3 | y_3)$$

Hidden Markov Models (HMMs)

$$p(\vec{x}, \vec{y}) = \prod_{i=1}^{n} p(y_i | y_{i-1}) p(x_i | y_i)$$

- Again a generative model
- We will back to HMMs to have a comparison with CRFs

- A sequential version of logistic regression so it is a discriminative model as well.
- HMMs are tied to linear-sequence structure but CRFs can have arbitrary structures.
- We have a sequence of labels y (e.g. sleepingdrinking- sleeping again)

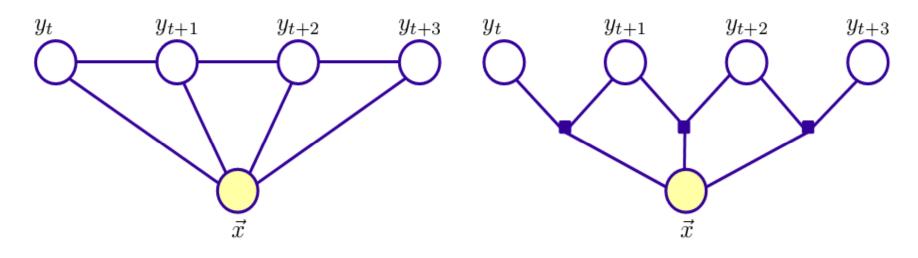
Starting with

$$p(\vec{v}) = \frac{1}{Z} \prod_{s} \Psi_{s}(v_{s})$$

$$p(\vec{y} | \vec{x}) = \frac{p(\vec{y}, \vec{x})}{p(\vec{x})} = \frac{p(\vec{y}, \vec{x})}{\sum_{y} p(\vec{y}, \vec{x})}$$
$$= \frac{\frac{1}{Z} \prod_{s} \Psi_{s}(\vec{x}_{s}, \vec{y}_{s})}{\sum_{y} \frac{1}{Z} \prod_{s} \Psi_{s}(\vec{x}_{s}, \vec{y}_{s})}$$

$$p(\vec{y} \mid \vec{x}) = \frac{1}{Z(\vec{x})} \prod_{s} \Psi_{s}(\vec{x}_{s}, \vec{y}_{s})$$

 Ψ_s is the factor corresponding to maximal clique s

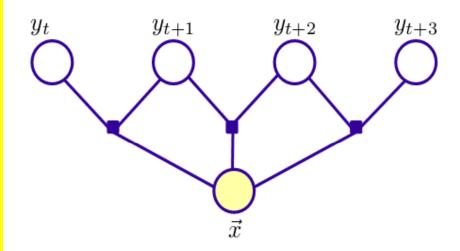


(a) Independency graph

(b) Factor graph

$$p(\vec{y} | \vec{x}) = \Psi_1(y_t, y_{t+1}, \vec{x}) \Psi_2(y_{t+1}, y_{t+2}, \vec{x}) \Psi_3(y_{t+2}, y_{t+3}, \vec{x})$$

To define feature functions we can use observations from any time step, that is because we have written the observation vector x in one node. For e.g. it is possible to use the next image xt+1 to define a feature



(b) Factor graph

$$(y_{t+1}, y_{t+2}, \vec{x}) \Psi_3(y_{t+2}, y_{t+3}, \vec{x})$$

Now assume each potential function is a logistic function

$$\Psi_s(\vec{x}, y_s) = \exp(\sum_i \lambda_i f_i(\vec{x}, y_s))$$

For example for a linear-chain CRFs

$$\Psi_{s}(\vec{x}, y_{s}) = \exp(\sum_{i} \lambda_{i} f_{i}(\vec{x}, y_{j}, y_{j-1}, j))$$

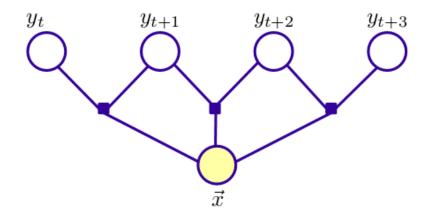
 So for a linear-chain CRF, the overall conditional probability is

$$p(\overrightarrow{y}|\overrightarrow{x}) = \frac{1}{Z(\overrightarrow{x})} \exp(\sum_{j} \sum_{i} \lambda_{i} f_{i}(\overrightarrow{x}, y_{j}, y_{j-1}, j))$$

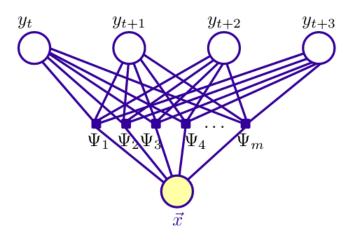
- The outer sum runs over each potential function j out of n frames of video.
- The inner sum runs over each feature i out of m features

Play with CRF equation result in different graphs

$$p(\vec{y}|\vec{x}) = \frac{1}{Z(\vec{x})} \prod_{j=1}^{n} \exp \sum_{i} \lambda_{i} f_{i}(\vec{x}, y_{j}, y_{j-1}, j)) \qquad p(\vec{y}|\vec{x}) = \frac{1}{Z(\vec{x})} \prod_{i=1}^{m} \exp \sum_{j} \lambda_{i} f_{i}(\vec{x}, y_{j}, y_{j-1}, j))$$



$$p(\vec{y}|\vec{x}) = \frac{1}{Z(\vec{x})} \prod_{i=1}^{m} \exp \sum_{j} \lambda_{i} f_{i}(\vec{x}, y_{j}, y_{j-1}, j)$$



Notice to its similarity to logistic regression

CRFs

- Inference: Given observation x and a CRF λ : find the most probably fitting label sequence y
- Training: Given label sequences Y and observation sequences X: find parameters of a CRF, weights λ , to maximize p(y|x; λ).

CRFs - Training

- MLE of model parameters λ
- regularization terms are often added to prevent over-fitting
- For linear-chain CRFs, (log-)likelihood function is concave (=> easy to maximize)

$$\lambda^* = \underset{\lambda}{\operatorname{arg min}} L(\lambda, D) + C \frac{1}{2} \|\lambda\|^2$$

$$L(\lambda, D) = -\log \left(\prod_{k=1}^{m} P(\mathbf{y}^k | \mathbf{x}^k, \lambda) \right)$$

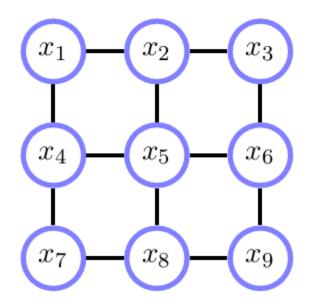
$$= -\sum_{k=1}^{m} \log \left[\frac{1}{Z(\mathbf{x}_m)} \exp \sum_{i=1}^{n} \sum_{j} \lambda_j f_j(y_{i-1}^k, y_i^k, \mathbf{x}^m, i) \right]$$

CRFs - Inference

- It is all about optimization.
- Belief propagation, Linear programming relaxations, Dual decomposition, Psedoboolean optimization, . . .

 the well-known method, graph-cut, will be discussed next session

CRFs for images



- Consider image as a field of random variables
- unary potentials + binary potentials

CRFs for images

 Negative Log-likelihood of p(y|x) gives the socalled energy function

$$p(y \mid x) = \prod_{j=1}^{n} e^{-\Phi(y_p; x)} \prod_{p \propto q} e^{-\Psi(y_p, y_q; x)}$$

$$E(y_1, ..., y_n; x) = \sum_{p} \Phi(y_p; x) + \sum_{p \sim q} \Psi(y_p, y_q; x)$$

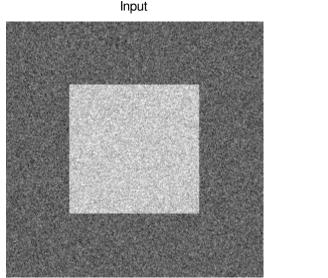
Non-convex with thousands of dimension

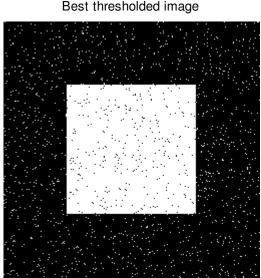
- prior term
- unary term

- pair wise term
- smoothness term
- binary term

CRFs for images

Segmentation as an intuitive problem





- If we only have unary term, the cheapest solution is the thresholded output
- The functionality of binary term is to keep the smoothness

connection to HMM

 long story short: CRFs are more powerful – they can model everything HMMs can and more:

$$p(\vec{x}, \vec{y}) = \prod_{i=1}^{n} p(y_i | y_{i-1}) p(x_i | y_i)$$

$$\log(p(\vec{x}, \vec{y})) = \sum_{i} \log(p(y_i | y_{i-1})) + \sum_{i} \log(p(x_i | y_i))$$

connection to HMM

• For every state $p(y_i = A \mid y_{i-1} = B)$ define

$$f_{AB}(y_i, y_{i-1}, i, x) = [y_i = A, y_{i-1} = B]$$

$$\lambda_{AB} = \log(p(y_i = A \mid y_{i-1} = B))$$

- Do the same for $p(x_i = C \mid y_i = D)$
- [.] is indicator function
- =>Proportional to the score of CRFs $e^{\sum \lambda_{AB} f_{AB}}$

Is vision solved? Can we all go home now?

- For many easy problems the technical problem of minimizing the energy is now effectively solved
 - Easy = sub-modular/regular, & first-order
 - Technical problem ≠ vision problem
 - "The energy"? Is the right one obvious??
- Still, this is vast progress in a relatively short period of time
 - These "easy" problems were impossible in '97!

What we explained

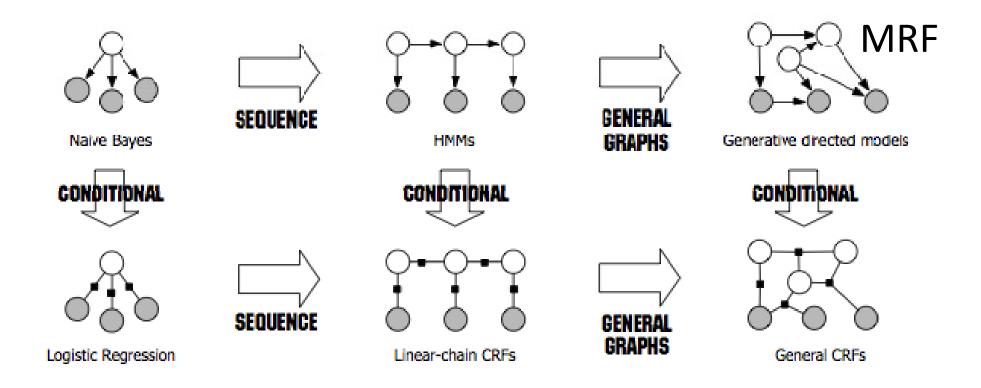


Figure 1.2 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-chain CRFs, generative models, and general CRFs.

References

Edwin Chen's Blog

Bloa

Archives

JAN 3RD, 2012

Introduction to Conditional Random Fields

Bayesian Reasoning and Machine Learning

David Barber ©2007,2008,2009,2010,2011,2012

Classical Probabilistic Models and Conditional Random Fields

An Introduction to Conditional Random Fields

Roman Klinger Katrin Tomanek

Charles Sutton University of Edinburgh csutton@inf.ed.ac.uk

Algorithm Engineering Report TR07-2-013 December 2007 ISSN 1864-4503

Andrew McCallum University of Massachusetts Amherst mccallum@cs.umass.edu

